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An aerodynamic model for

ABSTRACT

A design-oriented model for the unsteady aerodynamics of a
flapping wing has been developed using a modified strip theory
approach. Within this constraint, vortex-wake effects are account-
ed for as well as partial leading edge suction and post stall
behaviour. Also, the contributions of sectional mean angle of
attack, camber, and friction drag are added, which allows this
model to be used for the calculation of the average lift, as well as
the thrust, power required, and propulsive efficiency of a flapping
wing in equilibrium flight. An example of such calculations is pre-
sented in the performance prediction of a mechanical flying
pterosaur replica.

NOMENCLATURE

AR Wing aspect ratio

b/2 Semispan length

c Aerofoil chord

h Plunging displacement of leading edge in flapping
direction

C(k);ones Finite-wing Theodorsen function

C'(k) Theodorsen function defined by Equation (8)

Cy, Drag coefficient

C, Normal force coefficient

D Drag

F, Net chordwise force defined by Equation (21)

g,((lli)) } Complex components of C’(k), given by Equation (9)

k Reduced frequency defined by Equation (7)

L Lift

M Pitching moment

N Force normal to the wing’s chord

P Power

Rn Reynolds number

T Thrust

T, Leading edge suction force

U Flight speed

Vv Relative flow velocity at !/4-chord location, given by
Equation (13)

w, Downwash velocity at the 3/4-chord location

y Coordinate along the semispan
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o Relative angle of attack at the 3/4-chord location due to
the wing’s motion

o The flow’s relative angle of attack at the 3/s-chord
location, given by Equation (4)

o, Angle of section’s zero-lift line

Bo Magnitude of the dynamic twist’s linear variation

50 Dynamically-varying pitch angle, (6 — 0)

(0] Cycle angle, defined by Equation (33)

n Propulsive efficiency

un Leading edge suction efficiency

0 Pitch angle of chord with respect to U

0, Pitch angle of flapping axis with respect to U

2] Mean pitch angle of chord with respect to flapping axis

Atmospheric density
Flapping frequency, rad/s

€70

Subscripts
a Apparent mass

ac Aerodynamic centre
c Circulation

cf Crossflow

f Friction

in Input

out Output

sep Separated flow

Superscripts
- Mean value
Time derivative

INTRODUCTION

The motivation for this work is based on an interest in mechanical
flapping-wing flight. For that reason the analysis is very
design oriented, capable of being readily implemented for the
performance prediction of a variety of candidate configurations.
Most previous work seems to fall, roughly, into two categories.
The first, and most common, is the quasi-steady model where un-
steady wake effects are ignored. That is, flapping frequencies are
assumed to be slow enough that shed wake effects are negligible.
Although such an assumption gives a great simplification to the
aerodynamic modelling, this category can still contain a wide
range of sophistication in its detailed approaches. One of the sim-
plest examples is given by Kiichemann and von Holst() where a
rigid elliptical-planform wing is assumed to be performing span-
wise uniform motions, whereas Schmeidler 3 presents a much
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more detailed analysis using lifting-line theory to predict the
performance of a root-flapping wing. One of the most refined
versions of the lifting-line approach is offered by Betteridge
and Archer®, where they use their analysis to investigate the
possibility of optimised flapping behaviour.

The quasi-steady approach also includes models of intermediate
complexity, where the aerodynamic effects are concentrated at
certain representative spanwise points on the wing. Walker®
chooses three points along the semispan of a root-flapping wing,
and assumes the motion to be such that the lift and drag are
constant values on the downstroke and different constants on the
upstroke. Norberg® chooses a single representative point, at 70%
of the semispan, performing sinusoidal motion with constant
lift-curve slope coefficients throughout the flapping cycle.

The second category accounts for the unsteady aerodynamic
effects by modelling the wake in a variety of ways. Among those
analyses that include the mean lift required for equilibrium flight
(as compared with studies of animal swimming), Philps, East, and
Pratt™ represent the unsteady wake of a root-flapping non twist-
ing rigid wing with discrete nonplanar vortex elements which
include spanwise vortices spaced one per half cycle aft of the
quarter-chord bound vortex. A similar model was developed by
Blackwell and Archer® for their study of the propulsive charac-
teristics of a twisting wing, root flapping with constant, but
unequal, upstroke and downstroke motions (*“‘sawtooth motion”).

All of the above analyses assume that the wing is spanwise
rigid. That is, the wing’s semispan length (measured along a span-
wise axis moving with the wing) is assumed to stay constant
throughout the flapping motion’s full cycle. A remarkable
departure from this time-honoured assumption was offered by
Rayner®) when, upon noting that a lifting wing can produce nega-
tive thrust on the upstroke, he formulated a model assuming the
wing to be aerodynamically active only on the downstroke. Thus,
the vortex wake is a series of closed rings. However, Lighthill(10)
noted how the lift requirement for most bird flight compels some
aerodynamic activity on the upstroke, and described an extension
of Rayner’s model(!D in which upstroke lift is allowed, but that a
span difference between upstroke and downstroke produces the
net thrust.

The present analysis does not assume a variable span. Since the
motivation was to study the feasibility of mechanical flapping-
wing flight, it was felt that an important first step was to see if this
was achievable without having to envision a span variation mech-
anism. However, the kinematics do allow for spanwise bending
and twisting.

Further, this model assumes a continuous sinusoidal motion,
with equal times between the upstroke and downstroke. This,
along with the high aspect ratio envisioned for the wing, justified
the assumption of a modified strip theory where the finite span
unsteady-wake effects are accounted for by modified Theodorsen
functions.

This analysis also differs from previous work in that camber
and partial leading edge suction effects are accounted for. Too
often, researchers interested in animal flight have chosen, as their

dN¢ .‘
1
i

3/4 Chord

dDcamber
. dD¢

starting point, an inviscid flow theory which assumes 100%
leading edge suction. However, the reality is that the wings of fly-
ing animals can be highly cambered with little, if any, leading
edge suction.

Post stall behaviour is accounted for in this analysis. It may
well be that the variable span model for flapping flight can realis-
tically allow totally attached flow. However, flapping wings with
the presently assumed kinematics appear to be characterised by
significant flow separation over portions of the cycle. In fact, such
behaviour may not be undesirable for producing the average lift
and thrust required for sustained flight. An example is shown of
an efficiently designed model pterosaur wing for which this theory
predicted, and experiment showed, significant outer panel flow
separation.

METHOD OF ANALYSIS

The kinematics for each section of the wing are illustrated in
Figure 1. Upon using the leading edge as a reference point, the
section’s motion consists of a plunging velocity, 4, and a pitch
angle, 6. Note that / is not necessarily perpendicular to the mean-
stream velocity, U. If the wing is root flapping, as shown in Fig. 2,
then A would be perpendicular to the flapping axis.

The wing’s aspect ratio is assumed to be large enough that the
flow over each section is essentially chordwise (in the mean-
stream direction). Therefore, the section’s circulatory normal
force is given by

uv
chsz (¥)edy Lo (D)

V is the flow’s relative velocity at the !/a-chord location,
and

C,(v)=2n(a’ +ty +6) @
The parameters in Equation (2) are illustrated in Fig. 1, where it is
seen that the angle of the zero lift line, o, is a fixed value for the
aerofoil, and 0 is the section’s mean pitch angle. Further, 0 is
given by the sum:

0=0,+6, RG]

where 8, is the angle of the flapping axis with respect to the
mean-stream velocity, U, and 8, is the mean angle of the chord
with respect to the flapping axis. Note that if the wing does not
have a flapping axis (such as for whole-wing motions), then 8 is
the wing’s mean pitch angle.

"0 AT

Figure 1. Wing section aerodynamic forces and motion variables.

Figure 2. Assumed strip theory equivalence to whole wing motion.
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The remaining angle in Equation (2), o, is given by

,_| ARC'(k) | wy 4
¢ _[(2+AR)}1 U S

where o is the relative angle of attack at the 3/s-chord location due
to the wing’s motion:

(sicos(o-8,)+ 3 co+(o-)|

U

The coefficient of o in Equation (4) accounts for the wing’s finite-
span unsteady vortex wake by means of a strip theory model. As
illustrated in Fig. 2, each chordwise strip on the wing is assumed
to act as if it were part of an elliptical planform wing, of the same
aspect ratio, executing simple harmonic whole wing motions iden-
tical to that of the strip’s. For such a wing, Jones(12) derived that
the unsteady normal-force coefficient, 8C,, is given by

.. (5)

o=

8C, =2nC(k), o ...(6)

Jones

Where C(k),,,., is a modified Theodorsen function for finite AR
wings and k is the reduced frequency, given by
c®
k=—
U ..

C(k)jones 1s @ complex function, and it was found convenient to use
Scherer’s(13) alternative formulation:

ARC’(k)
C(k =—= .(8
( )!onex (2 + AR) ( )
where, for the complex terms given by
C'(k)=F'(k)+iG’(k) )
Scherer presents the approximate equations:
, Ck?
F (k) =1- m
)= GGk
M e
_ 0-5AR
"7 (2-32+ AR)
0-772

C,=0-181+——=
AR

Upon noting that the assumed motion is given by

o= Ae'® ... (10)

one obtains, when Equations (7), (9), and (10) are substituted into
Equation (4), that

o=—2R {F’(k)owL—G (&) a}-&
(2+AR) 2U  k U

The downwash term, w,/U, is due to the mean lift produced by

0, and O, and it may be calculated in a variety of ways. If one

wished to stay consistent with the strip theory model assumed for

the unsteady aerodynamic terms, then w,/U could be approximat-

ed by the downwash for an untwisted elliptical-planform wing,
obtained from Kuethe and Chow(14):

wy 2(ch + 9)

U 2+AR
However, if the wing has significant spanwise variation of o+ 8,
then one may wish to calculate w,/U by a more accurate method,

such as the extended lifting-line theory for twisted wings
described in Ref. 14.

.1

... (12)

Returning to Equation (1), note that the flow velocity, V, must
include the downwash as well as the wing’s motion relative to U.
This is accomplished by including o along with the kinematic
parameters:

N —

V= {[UCOSG—/lSin(G—éa)]Z +[U(oc’ +§)—%cé]2} ..(13)

An additional normal force contribution comes from the appar-
ent mass effect, which acts at the midchord (see Fig. 1) and is
given by

W = pnc’

a

v,dy ...(14)

where v, is the time rate of change of the midchord normal
velocity component due to the wing’s motion:

\32=U(x—icé ...(15)
Therefore, the section’s total attached flow normal force is
dN =dN, +dN, ... (16)

The section’s circulation distribution likewise generates forces

in the chordwise direction, as illustrated in Fig. 1. From
DeLaurier(!9, the chordwise force due to camber is given by
AD,4pr = ~2m0t0 (0" +6) 2 gv cdy )

Garrick’s(19) expression for the leading edge suction of a two
dimensional aerofoil may be applied to the present strip theory
model by extending it with Equation (4) to obtain

2 N\2
dT, =n,2n w+5-L18| PV
4 U 2

The efficiency term, n, accounts for the fact that most aerofoils,
due to viscous effects, have less than the 100% leading edge

suction predicted by potential-flow theory.
Viscosity also gives a chordwise friction drag

cdy ... (18)

V2
de=(Cd)pr"cdy ...(19)
where V, is the flow speed tangential to the section, approximated
by

V, =UCos8 - hSin(6-8,) ... 20)

and (C); is the drag coefficient due to skin friction, for which ex-
pressions may be found in Hoerner(!?). Thus, the total chordwise
force is

dF, =dT,-dD

camber _de ... (2D
An advantage of the strip theory model is that it allows for an
approximation to localised post stall behaviour. The dynamic stall

angle is obtained from Prouty(1®)
.1
col |2
stan = (as’a”)smtic * § l:?i} 3

and is chosen to apply at the leading edge. Therefore, the criterion
for attached flow over the section is

r.n 3 e
(as’””)min S |ia +8- Z[%J:l < (astall)max e (23)

When the attached flow range is exceeded, totally separated
flow is assumed to abruptly occur, for which condition all
chordwise forces are negligible:
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dD,4perdT;,dD; =0 .24
and the normal force is given by

dN = (dN, )w + (dNa)sep ... (25)
(dN)sep» shown in Fig. 1, is due to crossflow drag:

—(c) P, .

(ch)w = (cd)cf > cdy (26)

where
1
V=(v2+12)? ..

and V, is the midchord normal velocity component due to the
wing’s motion (note that v,, in Equation (15), is the linearised
time-derivative of V,):

V,= HCos(9—§G)+%cé+USin9 ... (28)

Also, (dN,),,, is due to apparent-mass effects, assumed to be half
that of the attached flow value in Equation (14):

1
(dNa )sep = E dNa

Now, the equations for the segment’s instantaneous lift and
thrust are

dL = dNCos6 + dF,Sin6

... (29

... (30)

dT = dF,Cos® — dNSin® .31

These may be integrated along the span to give the whole wing’s
instantaneous lift and thrust:

b
L(1)=2? CosydL

° ... (32)
T(r)= 2]05 dr

where Y(#) is the section’s dihedral angle at that instant in the
flapping cycle.

The wing’s average lift and thrust are obtained by integrating
L(t) and T{(t) over the cycle. To do this, it was found most conve-
nient to perform the integration with respect to cycle angle, ¢,
instead of time, ¢, where

d=ot ... (33)
so that the average lift and thrust are expressed as
— 1 2n
L==21, L(¢)do
... (3%
T _ L 21 T(q))dq)
2w Jo

One may also obtain the instantaneous power required to move
the section against its aerodynamic loads. For attached flow, this
is given by

dp, = dF,ASin(0-8, )+ dN':hCos(G -8,)+ -1—06]
4 ...(3%)
+dN,,Bce] M, B - dM.@

where dM,,. is the section’s pitching moment about its aerodynamic cen-
tre, and dM, includes apparent-camber and apparent-inertia moments:

1 ” 1 4..:|
AM, = | = prc?OU + ——prc* |d ...(36)
a [mpnc 128PTC Y|V

For separated flow, the input power expression becomes

. - 1 .
dP, = dN“p[hCos(e -8,)+ Ece] ...(37)

The instantaneous aerodynamic power absorbed by the whole
wing is found from

b
P, (1)=2 J'02 dP, ...(38)

and the average input power, throughout the cycle, is given by

B, == ["p,(6)do

... (39
o (39)
Upon noting that the average output power from the wing is
P, =TU ... (40)
the average propulsive efficiency may be calculated from
n E)Mt
==z ... (41
n P “1
NUMERICAL EXAMPLE

In the mid 1980s, the National Air and Space Museum in
Washington DC contracted the AeroVironment Corporation of
Monrovia California to design and construct a giant flying robot
pterosaur(!9, This challenging task produced remarkable research
in  several areas, including computerised stability
augmentation and flight control systems, as well as providing an
engineering reinterpretation of paleontological evidence.

The author was requested by AeroVironment to apply the flap-
ping-wing analysis described above to a performance prediction
of the completed 18 ft-span model. The 40 Ib total weight (mainly
due to onboard batteries) plus the drag of the fur-like covering,
was evidently preventing sustained flapping flight. Although
AeroVironment had done its own aerodynamic predictions, an
independent check was desired. The author and his associate,
Jeremy Harris of Battelle Memorial Institute, were pleased to
perform these calculations for this unusual aircraft.

The wing’s planform geometry is illustrated in Fig. 3, where the
inflight static twist distribution, 8, is designed to be zero. The
aerofoil along the span is the Liebeck LPT 110A , for which it
was calculated that

oy =0-5°
n,=0-98
C,.. =0-025 ... (42)

(axtall )max = 130
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Figure 3. Wing planform of the QN pterosaur model.
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It was assumed, for this example, that negative-o stalling
would not occur. Therefore, (Ot min Was not specified. Also, at
the time this work was performed, the dynamic-stall criterion had
not yet been incorporated into the analysis. Thus &, from Equation
(22), was effectively zero.

The texture of the wing’s surface is such as to produce a full
chord turbulent boundary layer, so that the friction drag was
obtained from Ref. 17 as:

( ) _ 0-89
d)s _[log(Rn)]z'ss ... (43)

where Rn is based on the local chord. Further, the post stall nor-
mal force coefficient, (C,), was chosen to be that for a high-AR
flat plate, given by Ref. 20 as 1-98.

Root flapping kinematics are assumed, with no spanwise bend-
ing. Therefore, the plunging motion is given by

h=—(Ty)Coso ... (44)

where I' is the maximum flapping angle magnitude, given as
0-3491 rad (20°).

The dynamic twisting, 86, is likewise assumed to vary linearly
along the span, so that

80 =—(B,y)Sing ... (45)

For this study, B, was chosen as a variable. Further, note that
the above equations fix the phasing between plunging and pitch-
ing at — 90°.

Discrete element integrations of Equations (32), (34), (38), and
(39) were performed.”For example, by assuming the time integra-
tion to be approximated by a summation at discrete cycle
increments, ¢; (j = 1 to m), Equation (34) becomes

ZELZLJ. ... (46)
m =
Also, from Equation (32), one may approximate L; by
L; =2 Cosy,AL; ... (4D

i=1

where i refers to station locations along the wing’s semispan, y;,
(i = 1 to n). This means, for the equations presented in the previ-
ous Section, that dy is replaced by a finite increment Ay, which is
centred about y; with corresponding values for c;, 8;, etc. For the
example, equal Ay increments of 6 in were chosen, giving n = 12.
Also, m = 20 was selected for the time intervals.

The results are shown in Figs 4 and 5 where, for the given flap-
ping frequency of 1-2 Hz, it is seen that the wings will lift the
model’s 40 1b weight if the flapping-axis angle, 8,, equals 7-5°,
the flight speed, U, equals 44 ft/s, and the dynamic twist magni-
tudes, B, are in excess of 2-2°/ft. Beyond this, the lift stays fairly
constant up to the highest B, value considered (3-0°/ft).

The average thrust, however, achieves its maximum value of
1.2 Ib within a very narrow range of B,, namely = 2-25°/ft.
Beyond this, the thrust falls off rapidly to zero at B, = 2-8°/ft. This
is also seen in the propulsive efficiency curve, where a distinct
maximum of 42% is reached at the B, = 2-25°/ft value.

It should be mentioned that the flapping wing propulsive effi-
ciency, as defined in this article, is not directly comparable to
propeller efficiencies unless, for a given flight situation, the
wing’s drag were subtracted from the propeller’s thrust. There-
fore, the example flapping wing is a more efficient thruster than
the 42% figure would indicate.

The average input power, P,,, decreases steadily with B,, which
is simply an indication of how the wing requires less work to flap
as the dynamic-twisting magnitudes increase. In fact, if B, in-

creased much beyond 3-0°/ft, P, would become negative,

Flapping-Axis Angle, 8= 7.5 deg
U= 44 ft/sec Freq.=1.2 Hz

o
g >
|)-: 15
£ e
i G
04 —o— Lift ~410
06 b —o— Thrust 5
08 - L : : 0

0 05 1 I.IS 2 25 3
Dynamic Twist, Bo, (deg/ft)

Figure 4. QN average lift and thrust performance.

" indicating a “windmilling” situation where energy is taken from

the 44 ft/s flow. It is seen that this occurs quite abruptly beyond
the optimum [, condition.

It should be noted that, for engine sizing purposes, it is the peak
value of input power that is required, not the average. For this
example, the peak input power required to overcome the aero-
dynamic reaction forces and moments was calculated to be
800 watts.

For the B, = 2:25°/ft maximum efficiency case, the analysis
predicted considerable stalling on the outboard panels during
the downstroke. This was due, in large measure, to the high value
of 8, required for equilibrium flight. Such behaviour was
also observed during flow visualisation experiments by
AeroVironment.

Finally, although the optimum B, = 2-25°/ft dynamic twist
distribution appeared to identify a condition for sustained flight,
tests of the QN aircraft showed only powered glides. One reason
may be that the optimum 3, requirement allows virtually no error,
which would be difficult to implement in practice. Additionally,
there may have been significant differences between the actual
and predicted behaviour of the aerofoil. For example, flight tests
showed that the fur-like covering evidently gave more drag than a
smooth skin. This would require expression by an increase in the
(Cp)y values used in this analysis, thus reducing thrusting ability.
Also, when the author inspected the aircraft at the National Air
and Space Museum, it appeared that the irregularity of the cover-
ing around the leading edge would significantly decrease the lead-
ing edge suction efficiency from its predicted value of n,= 0-98. It

Flapping-Axis Angle, 8, = 7.5 deg
U= 44 ft/sec Freq.=1.2 Hz
350 1045
n - >
§ %0 g
2 4035
> 250 | 5]
|hE. 103 2
5 20 J025 @
2 % 3
€ 150} 102 7
2 0 Jois &
'i —e— Efficiency 1o §
z SO —~o— Power 005 =
0 ! 1 1 1 1 0
0 05 1 15 2 25 3
Dynamic Twist, Bo, (deg/ft)

Figure 5.QN average input power and propulsive efficiency.
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is difficult to see how this could have been avoided, considering
the constraints imposed by the requirements for realism in appear-
ance and kinematics. However, a reduction in m, likewise
reduces the wing’s thrusting ability. Considering that the margin
for sustained flight was fairly narrow to begin with, any of the
above reasons could have sufficiently compromised the aircraft’s
performance.

CONCLUSIONS

This article has presented a design-oriented method by which one
may predict the flight performance of harmonically flapping
wings. The major assumptions are that, first, the semispan remains
constant throughout the motion; and second, a modified strip
theory is used to model the aerodynamics. However, general dis-
tributions of spanwise twisting and first order bending may be
specified. Also, certain important real fluid effects are accounted
for, such as post stall behaviour and partial leading edge suction.
These are features which should be included in any accurate flap-
ping-wing analyses, especially when applied to flying animals
which usually have sharp edged wings with little leading edge
suction.

When the analysis was applied to the Project QN mechanical
pterosaur, it was found that sustained flight was only possible for
a virtually singular dynamic twist distribution. The difficulty of
mechanically implementing this, along with other considerations
such as the aerofoil’s “as built” vs theoretical performance,
appeared to confirm the aircraft’s inability to climb or sustain. It
should be noted, though, that without the drag of the fur-like
covering and the weight of the batteries for electric propulsion,
the analysis indicates that such a flapping wing aircraft could
readily achieve sustained flight. That is, the required lift and thrust
may be obtained from a harmonically flapping constant semispan
wing with localised flow separation.

This should be compared with the attached flow variable span
model discussed in the Introduction, which appears to be an accu-
rate representation for a spectrum of animal flight, especially at
low speeds. The present analysis, however, shows that the con-
stant-semispan model is also capable of efficient flapping-wing
flight for certain conditions, such as may be experienced by large
animals at high speeds, or ornithopter aircraft.

In fact, for the purposes of achieving mechanical flapping-wing
flight, constant semispan motion has been the traditional approach
by experimenters. Even if the designers had been aware of any
variable span concept, the difficulty of its mechanical implemen-
tation (in addition to all the other challenges of ornithopter design)
may well have discouraged its use. What is seen, however, is that
a constant semispan wing holds the promise, if properly designed
and incorporated, of producing the thrust and lift required for
successful flapping-wing flight.
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Editors note: Two further papers on flapping-wing flight by Professor
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